Автоматическое зарядное устройство автомобильное. Простое универсальное автоматическое зарядное устройство Автомат для зарядки автомобильных аккумуляторов

Очень простая схема зарядного устройства, в котором используется только один транзистор для определения напряжения автоматического отключения аккумулятора от сети, когда он будет полностью заряжен.

Описание схемы зарядного устройства автомобильного аккумулятора

На рисунке мы видим простую схему, где один транзистор включен в его стандартном режиме работы.

Принцип работы схемы можно понять из следующих пунктов:

  1. Заряд аккумулятора считается законченным, когда напряжение на его клеммах достигнет 13,5 – 14 вольт.
  2. Порог отключения (13,5 – 14 вольт) устанавливается подстроечным резистором R2 при подключенном, полностью заряженном аккумуляторе. Когда напряжение на клеммах аккумулятора будет около 14 вольт, транзистор Т1 включит реле и цепь заряда будет разорвана.

Это автоматическое автомобильное зарядное устройство не только просто в изготовлении, но и достаточно умное для того что бы заботиться о состоянии аккумулятора и заряжать его очень эффективно.

Список деталей:

  • R1 = 4,7 кОм;
  • R2 = 10K подстроечный;
  • T1 = ;
  • Реле = 12В, 400 Ом, SPDT;
  • TR1 = напряжение вторичной обмотки 14 В, ток 1/10 от емкости АКБ;
  • Диодный мост = на ток равный номинальному току трансформатора;
  • Диоды D2 и D3 = 1N4007;
  • C1 = 100uF/25V.

От администратора сайта

Статья носит теоретический характер, на практике я эту схему не собирал . Рекомендую обратить внимание на такие важные моменты:

  1. Отключение аккумулятора от зарядного устройства происходит при достижении зарядного напряжения 13,5 – 14 вольт. Устанавливать этот порог напряжения (подстроечный резистор R2) нужно при подключенном, полностью заряженном аккумуляторе. Если заряженного аккумулятора нет, тогда нужно R2 выставить в нижнее (по схеме) положение, то есть «посадить» базу транзистора на землю. Затем подключить аккумулятор и включить зарядное устройство в сеть. Далее нужно постоянно контролировать зарядное напряжение, когда оно достигнет 13,5 – 14 вольт нужно выставить R2 в такое положение, что бы реле разомкнуло свои контакты.
  2. При достижении на клеммах аккумулятора напряжения 13,5 – 14 вольт, устройство отключается от аккумулятора. Далее при снижении напряжения до 11,4 вольт, зарядка снова возобновляется. В оригинале статьи написано, что такой гистерезис обеспечивают диоды в эмиттере транзистора.
  3. В схеме отсутствует ограничение зарядного тока , поэтому рекомендую при изготовлении этого зарядного устройства использовать трансформатор мощностью не менее 150 ватт, вторичная обмотка которого рассчитана на ток не менее 10 ампер. Диодный мост так же должен соответствовать указанному току.

Устройство разработано для зарядки 6 вольтовой герметичной свинцовой батареи детского электромотоцикла, однако с минимальными изменениями его можно применить для зарядки других типов аккумуляторных батарей (АКБ), с любым напряжением, для которых условием окончания заряда является достижение определённого уровня напряжения. В данном устройстве заряд батареи прекращается при достижении напряжения на клеммах 7.3В. Заряд ведётся не стабилизированным током, ограниченным на уровне 0,1С резистором R6. Уровень напряжения, при котором устройство прекратит заряд, задаётся стабилитроном VD1 с точностью до десятых долей вольта.

«Сердцем» схемы является операционный усилитель (ОУ), включённый как компаратор, и подключённый инвертирующим входом к источнику образцового напряжения (цепочка R1-VD1), а не инвертирующим к АКБ. Как только напряжение на АКБ превысит образцовое напряжение, компаратор переключится в единичное состояние, транзистор Т1 откроется и реле REL1 отключит АКБ от источника напряжения, одновременно подаст положительное напряжение на базу транзистора T1. Таким образом Т1 окажется открытым и его состояние уже не будет зависеть от уровня напряжения на выходе компаратора. Сам компаратор охвачен положительной обратной связью (R7), что создаёт гистерезис и приводит к резкому, скачкообразному переключению выхода и открыванию транзистора. Благодаря этому схема избавлена от недостатка подобных устройств с механическим реле, при котором реле издаёт неприятный дребезжащий звук из-за того, что контакты балансируют на границе переключения, но включение ещё не происходит. В случае отключения сетевого напряжения устройство возобновит работу, как только оно появится и не допустит перезаряда АКБ.

Устройство собрано из доступных деталей, начинает работать сразу, и не нуждается в настройке. Напряжение отключения зависит только от параметров стабилитрона. ОУ, указанный на схеме, может работать в диапазоне питающих напряжений от 3-х до 30 вольт и при подключении АКБ с другим напряжением, например 12V, необходимо подобрать стабилитрон на напряжение заряженной АКБ (14.4В).

Устройство собрано согласно схемы и рисунка печатной платы, проверено в работе.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 Операционный усилитель

LM358

1 В блокнот
T1 Биполярный транзистор

2SC2366

1 В блокнот
VD1 Стабилитрон

Д808

1 Подобрать по напряжению стабилизации В блокнот
VD2 Диод

КД521А

1 В блокнот
VD3 Диод Шоттки

1N5819

1 В блокнот
VDS1 Диодный мост

КЦ402А

1 КЦ405A-E В блокнот
С1 Электролитический конденсатор 1000 мкФ 25 В 1 В блокнот
С2 Конденсатор 0.1 мкФ 25 В 1 SMD 1206 В блокнот
R1 Резистор

2.2 кОм

1 SMD 1206 В блокнот
R2-R5 Резистор

1 кОм

4 SMD 1206 В блокнот
R6 Резистор

24 Ом

1 2 Вт В блокнот
R7 Резистор

30 кОм

1 SMD 1206 В блокнот
Tr1 Трансформатор 230/12 В 1

Как его выбрать и что нужно знать?

При выборе зарядного устройства прежде всего вам необходимо знать тип аккумулятора, установленного в машине, ведь некоторые из них требуют персонального внимания и подхода.

Например, это касается свинцовых батарей - они требуют использования специальных зарядок.

Для большинства аккумуляторов – подходят практически любые универсальные устройства.

Хотя современные приборы позволяют одновременно заряжать практически любую АКБ, используя несколько значений выходной мощности и зарядного тока.

Особенности выбора зарядки для АКБ

Определившись с видом батареи, требующей зарядки, выбор лучшей модели продолжают по другим характеристикам.

Желательно отдавать предпочтение компактным переносным моделям, обращаться с которыми удобнее и проще.

А, выбирая между оборудованием, работающим от прикуривателя и от однофазной сети, следует обращать внимание на второй вариант – зарядные устройства, которым требуется стандартные 220В.

И, как правило, обеспечивают сначала половины ёмкости батареи, постепенно снижая мощность до окончательного заряда.

Для защиты аккумуляторов от перезаряда каждый прибор комплектуется специальной защитой, автоматически отключающей его, когда АКБ зарядилась на 100%.

Среди других параметров, которые требуется учесть при выборе зарядки, следует отметить:

  • ёмкость батарей, которые требуется заряжать. Для легковых авто она равна, в среднем, от 40 до 62 Ач, для мотоциклов – до 20 Ач, для микроавтобусов – до 120–160 Ач;
  • зарядный ток. 6 А подходит для аккумуляторов ёмкостью до 60–70 Ач. 12 и 18 А – оптимальный вариант для микроавтобусов и внедорожников;
  • ценовая категория. Стоимость большинства моделей находится на уровне 2000–3 тыс. руб. Более функциональное оборудование обойдётся в 5 тысяч и более.

Марка зарядного устройства тоже имеет значение. Самыми надёжными и эффективными приборами считаются зарядки немецкого производства. В то время как корейские модели отличаются доступной ценой при достаточно неплохих характеристиках.

Читайте также:

Популярные модели зарядок

Практически любое современное зарядное устройство справляется с восстановлением аккумулятора легковых автомобилей и небольшого коммерческого транспорта в течение 6–10 ч.

Эти же приборы позволяют вернуть работоспособность полностью разряженной АКБ. При этом время восстановления ёмкости батареи с нулевым зарядом рассчитывается с учётом 10–15% запаса.

Например, устройство с током 6 А зарядит аккумулятор 60 Ач не за 10, а за 11–12 ч.

Если же батарея будет заряжена на треть (именно с этого момента рекомендуется начинать зарядку) – соответственно, за 7–8 часов.

Желая уменьшить это время, следует покупать более мощное устройство. При этом выбор устройства с автоматической плавающей регулировкой параметров повысит срок службы аккумуляторов. Установка меньшего значения зарядного тока увеличит время заряда, но и улучшит восстановление. Если функции автоматической регулировки у зарядного устройства нет, пользователю придётся самостоятельно следить за батареей.

Bosch C3 – простая модель для легковых авто

Автомобильная зарядка Bosch C3, выпускаемая известным немецким концерном, является оптимальным вариантом для большинства батарей – от кислотно-свинцовых до гелевых.

Она имеет 4 полностью автоматизированных зарядных режима, дающих возможность восстанавливать аккумуляторы различной ёмкости (до 140 Ач) при положительной и отрицательной температуре.

И высокая мощность гарантируют правильную и быструю зарядку.

А системы безопасности способны предупредить пользователя о неправильном присоединении батареи, предотвращая короткое замыкание.

Характеристики оборудования:

  • рабочее напряжение: 220В (50 Гц);
  • выходное напряжение: 6В (для заряда аккумуляторов ёмкостью до 14 Ач) и 12В (до 120 Ач);
  • сила зарядного тока: 0,8 А и 3,8 А;
  • тип заряжаемых батарей: гелевые (WET, AGM, GEL, VRLA) и свинцово-кислотные;
  • стоимость модели: от 2300 руб.

Рис. 1. Bosch C3 – компактное и недорогое, однако, не слишком мощное устройство.

Bosch C7 – максимальная функциональность

Благодаря использованию зарядного устройства Bosch C7, можно восстанавливать ёмкость автомобильных аккумуляторов различного типа – от гелевых до кислотно-свинцовых.

При этом используется уже не 4 режима, как у менее функциональной модели C7, а шесть:

  1. Для заряда одной обычной батареи с пусковым током 7А;
  2. Для повышения ёмкости аккумуляторов гелевого типа или любых АКБ в зимнее время (ток 7 А);
  3. Восстановления АКБ после полной разрядки (током 1,5 А);
  4. Поддерживание питания батареи в процессе её замены;
  5. Зарядка батарей лёгкого грузового транспорта;
  6. Повышение ёмкости аккумуляторов грузовиков в условиях отрицательных температур.

Технические параметры:

  • напряжение: рабочее – 220В, выходное – 12В и 24В;
  • сила тока: 3,5А и 7 А;
  • зарядка аккумуляторов: до 230 Ач;
  • совместимость с АКБ: гелевые и свинцовые;
  • стоимость: от 6500 руб.

Рис. 2. Bosch C7 – универсальное устройство для любого аккумулятора.

Tesla ЗУ-40080 – недорогой прибор для батарей грузового транспорта

Зарядка ЗУ-40080 марки Тесла имеет сравнительно большие габариты и обеспечивает восстановление свинцово-кислотных батарей различного оборудования – от обычного транспорта до катеров, мотоциклов и даже газонокосилок.

Ёмкость заряжаемого аккумулятора может находиться в пределах 20–180 Ач, а зарядный ток достигает 8 А, что позволяет прибору работать с АКБ , микроавтобусов и грузовиков.

Для удобства использования устройство комплектуется системами защиты от неправильного подключения, перегрева и короткого замыкания, зарядными проводами длиной 1.4 и 1.7 метров.

Для размещения на стене у прибора есть специальные крепления на ударопрочном и влагозащищенном корпусе.

А к главным плюсам оборудования относят его минимальную среди аналогичных устройств цену.

Основные параметры:

  • величина напряжения: входного – 220–240В (50 Гц), выходного – 6/12В;
  • зарядный ток: 5,6 А (номинальный) и 8 А (максимальный);
  • максимальная ёмкость заряжаемых АКБ: 180 Ач;
  • тип АКБ: свинцово-кислотные;
  • цена прибора: от 1500 руб.

Рис. 3. Прибор марки Tesla – универсальный, мощный и доступный по цене.

Deca SM 1270 – компактный и универсальный

Небольшое устройство итальянской марки Deca обеспечит восстановление аккумуляторов обычного автомобиля в течение всего 8–10 часов, в зависимости от ёмкости.

А возможность заряда АКБ до 225 Ач позволяет использовать прибор ещё и для работы с грузовым транспортом.

Функциональность, выражающаяся в наличии трёх режимов работы, и безопасность зарядки сочетается с универсальностью (возможностью заряда батарей любого типа).

А единственным минусом можно назвать только высокую цену, хотя она вполне соответствует возможностям.

Характеристики модели:

  • рабочее напряжение: 220–240В;
  • параметры подключаемого оборудования: 12В, 15–225 Ач;
  • зарядный ток: 7 А;
  • аккумуляторы: AGM, свинцовые и гелевые;
  • стоимость: от 4500 руб.

Рис. 4. Модель SM 1270 – небольшая цена и размер в сочетании с высокой функциональностью.

Lavita LA 192309 – компактный набор для зарядки обычных авто

Ещё одно зарядное устройство, LAVITA LA 192309, отличается невысокой ценой и представляет собой целый набор оборудования для восстановления любых свинцово-кислотных аккумуляторов.

К минусам прибора можно отнести необходимость ручного переключения мощности заряда, слабый зарядный ток и невозможность работать с АКБ ёмкостью больше 80 Ач.

К плюсам – ударопрочный, огнеупорный и вместе с тем лёгкий пластиковый корпус, невысокую цену и полную защиту от всех непредвиденных ситуаций – от неправильных подключений, замыкания, перегрева и перезарядки.

Параметры прибора:

  • напряжение: 220В;
  • выходное напряжение прибора: 6В и 12В;
  • сила заряда: 3,52 А;
  • характеристики батареи: 12–80 Ач, свинцово-кислотные;
  • цена: от 1500 руб.

Рис. 5. Удобный для использования и переноса прибор LAVITA LA 192309.

Читайте также:

Pulso BC-40100 – прибор для заряда АКБ на морозе

Прибор для зарядки АКБ является оптимальным вариантом для использования в условиях низких температур.

Изготовленное из качественного металла и пластика зарядное устройство отличается доступной стоимостью, сравнительно небольшими размерами, защитой от перегрева, перезаряда и неправильного подключения аккумуляторов.

Высокое значение зарядного тока в 10 А и совместимость с батареями ёмкостью 20–200 Ач дают возможность заряжать батареи легковых авто, грузовиков, газонокосилок, внедорожников и мотоциклов.

Характеристики Pulso BC-40100:

  • напряжение в сети: 220В;
  • напряжение выхода: 6 и 12В;
  • зарядный ток: 10 А;
  • параметры заряжаемых аккумуляторов: свинцово-кислотные, ёмкость 20–200 Ач;
  • стоимость зарядного устройства: от 2300 руб.

Рис. 6. Pulso BC-40100 – неплохой вариант для зарядки любых АКБ при любой температуре.

АИДА 8 super – лёгкий универсальный прибор

Автоматическое зарядное устройство Аида 8 Супер подходит для восстановления ёмкости и работоспособности аккумуляторов любого типа, устанавливаемых на грузовых и легковых авто, мотоциклах и автобусах.

Прибор осуществляет зарядку батарей в 3 режимах (включая хранение АКБ в межэксплуатационный период) и работает даже с оборудованием, разряженном до нуля.

При этом обеспечивается полная защита от перезарядки и перегрева. Модель весит не более 600 грам и размещается в небольшой сумке для переноски.

Параметры Аида – 8:

  • напряжение в сети: 150–240В (50 Гц);
  • ток заряда: 4 и 8 А;
  • напряжение питания: до 13В;
  • аккумуляторы: 40–160 А/ч, AGM, свинцовые, гель;
  • цены: от 2 тыс. руб.

Рис. 7. Аида 8 Супер – сочетание небольшого размера и серьёзных возможностей.

АИДА 10s – зарядка и хранение мощных АКБ

С помощью зарядного устройства модели АИДАм-10S можно восстанавливать аккумуляторы любого автотранспорта, независимо от уровня их заряда и температуры окружающей среды.

Для запуска батарей используют специальный предпусковой режим с током 10 Ампер.

Прибор применяется также для хранения АКБ, когда они не используются, что позволяет сохранить их в течение определённого периода.

Преимущества модели заключаются в невысокой цене и небольших размерах, защите от неправильного подключения и возможности использоваться в качестве блока питания.

Параметры зарядного устройства:

  • допускаемое напряжение сети: 150–240В;
  • зарядные токи: 1, 5 и 10 А;
  • выходное напряжение: 12В;
  • тип АКБ: гель, свинец, AGM, 4–180 Ач;
  • стоимость: от 2300 руб.

Рис. 8. Аида 10С – оптимальный вариант для хранения АКБ легкового и грузового транспорта.

АИДА 11 – средняя цена и приличные параметры

Зарядка Аида 11 работает в ручном и автоматическом режиме, а также позволяет десульфатацию – восстановление работоспособности аккумуляторов.

Модель может использоваться для заряда батарей ёмкостью до 180 Ач, то есть устройств, устанавливаемых и на обычных авто, и на внедорожниках, автобусах и грузовиках.

Оборудование имеет 4 степени защиты, среднюю стоимость и небольшие габариты.

А среди его преимуществ можно назвать большое значение зарядного тока, благодаря которому даже полностью разряженная автомобильная АКБ на 60 Ач заряжается всего за 7 часов.

Основные параметры:

  • допустимое напряжение: выходное – от 160В до 240В, выходное – 12В;
  • частота в сети: 50–60 Гц;
  • зарядный ток – от 0 до 10 А;
  • тип заряжаемых батарей: свинцовые, гелевые и AGM;
  • стоимость прибора: от 2500 руб.

Рис. 9. Отечественная модель с неплохими параметрами.

Простая и удобная зарядка AUTO WELLE AW05-1208

Зарядка марки AUTO WELLE, так же как и все остальные модели в обзоре, имеет полную защиту от любых ошибок и неполадок.

А дополнительным преимуществом является ещё и влагозащита уровня IP 65.

Автоматизация работы прибора обеспечивается встроенным процессором, а универсальность – наличием нескольких режимов работы и возможностью заряжать АКБ любого типа ёмкостью до 160 Ач.

Особенности зарядки:

  • сила зарядного тока: 2 и 8 А;
  • заряжаемые батареи: свинцово-кислотные, AGM и гелевые, 4–160 А/ч;
  • напряжение: 220В, выходное – 6В и 12В;
  • цена: от 2 тыс. руб.

Рис. 10. Модель AW05-1208 – удобный интерфейс и небольшой размер.

А. Коробков

Дополнив имеющееся в вашем распоряжении зарядное устройство для автомобильной аккумуляторной батареи предлагаемым автоматом, можете быть спокойны за режим зарядки батареи - как только напряжение на ее выводах достигнет (14,5±0,2)В, зарядка прекратится. При снижении напряжения до 12,8...13 В зарядка возобновится.

Приставка может быть выполнена в виде отдельного блока либо, встроена в зарядное устройство. В любом случае необходимым условием для ее работы будет наличие пульсирующего напряжения на выходе зарядного устройства. Такое напряжение получается, скажем, при установке в устройстве двухполупериодного выпрямителя без сглаживающего конденсатора.

Схема приставки-автомата приведена на рис. 1.


Она состоит из тринистора VS1, узла управления тринистором А1, выключателя автомата SА1 и двух цепей индикации - на светодиодах НL1 и НL2. Первая цепь индицирует режим зарядки, вторая - контролирует надежность подключения аккумуляторной батареи к зажимам приставки-автомата. Если в зарядном устройстве есть стрелочный индикатор - амперметр, первая цепь индикации не обязательна.

Узел управления содержит триггер на транзисторах VТ2, VТ3 и усилитель тока на транзисторе VT1. База транзистора VТЗ подключена к движку подстроечного резистора R9, которым устанавливают порог переключения триггера, т. е. напряжение включения зарядного тока. «Гистерезис» переключения (разность между верхним и нижним порогами переключения) зависит в основном от резистора R7 и при указанном на схеме сопротивлении его составляет около 1,5 В.

Триггер подключен к проводникам, соединенным с выводами аккумуляторной батареи, и переключается в зависимости от напряжения на них.

Транзистор VT1 подключен базовой цепью к триггеру и работает в режиме электронного ключа. Коллекторная же цепь транзистора соединена через резисторы R2, R3 и участок управляющий электрод - катод тринистора с минусовым выводом зарядного устройства. Таким образом, базовая и коллекторная цепи транзистора VT1 питаются от разных источников: базовая - от аккумуляторной батареи, а коллекторная - от зарядного устройства.

Тринистор VS1 выполняет роль коммутирующего элемента. Использование его вместо контактов электромагнитного реле, которое иногда применяют в этих случаях, обеспечивает большое число включений - выключений зарядного тока, необходимых для подзарядки аккумуляторной батареи во время длительного хранения.

Как видно из схемы, тринистор подключен катодом к минусовому проводу зарядного устройства, а анодом - к минусовому выводу аккумуляторной батареи. При таком варианте упрощается управление тринистором: при возрастании мгновенного значения пульсирующего напряжения на выходе зарядного устройства через управляющий электрод,тринистора сразу начинает протекать ток (если, конечно, открыт транзистор VТ1). А когда на аноде тринистора появится положительное (относительно катода) напряжение, тринистор окажется надежно открытым. Кроме того, подобное включение выгодно тем, что тринистор можно крепить непосредственно к металлическому корпусу приставки-автомата или корпусу зарядного устройства (в случае размещения приставки внутри его) как к теплоотводу.

Выключателем SА1 можно отключить приставку, поставив его в положение «Ручн.». Тогда контакты выключателя будут замкнуты, и через резистор R2 управляющий электрод тринистора окажется подключенным непосредственно к выводам зарядного устройства. Такой режим нужен, например, для быстрой зарядки аккумулятора перед установкой его на автомобиль.

Транзистор VT1 может быть указанной на схеме серии с буквенными индексами А - Г; VТ2 и VТ3 - КТ603А - КТ603Г; диод VD1 -любой из серий Д219, Д220 либо другой кремниевый; стабилитрон VD2 - Д814А, Д814Б, Д808, Д809; тринистор - серии КУ202 с буквенными индексами Г, Е, И, Л, Н, а также Д238Г, Д238Е; светодиоды - любые из серий АЛ102, АЛ307 (ограничительными резисторами R1 и R11 устанавливают нужный прямой ток используемых светодиодов).

Постоянные резисторы - МЛТ-2 (R2), МЛТ-1 (R6), МЛТ-0,5 (R1, R3, R8, R11), МЛТ-0,25 (остальные). Подстроечный резистор R9 - СП5-16Б, но подойдет другой, сопротивлением 330 Ом...1,5 кОм. Если сопротивление резистора больше указанного на схеме, параллельно его выводам подключают постоянный резистор такого сопротивления, чтобы общее сопротивление составило 330 Ом.

Детали узла управления монтируют на плате (рис. 2)


Из одностороннего фольгированного стеклотекстолита толщиной 1,5 мм.

Подстроечный резистор укрепляют в отверстии диаметром 5,2 мм так, чтобы его ось выступала со стороны печати.

Плату укрепляют внутри корпуса подходящих габаритов либо, как было сказано выше, внутри корпуса зарядного устройства, но обязательно возможно дальше от нагревающихся деталей (выпрямительных диодов, трансформатора, тринистора). В любом случае напротив оси подстроечного резистора в стенке корпуса сверлят отверстие. На лицевой стенке корпуса укрепляют светодиоды и выключатель SА1.

Для установки тринистора можно изготовить теплоотвод общей площадью около 200 см2. Подойдет, например, пластина дюралюминия толщиной 3 мм и размерами 100X100 мм. Теплоотвод прикрепляют к одной из стенок корпуса (скажем, задней) на расстоянии около 10 мм - для обеспечения конвекции воздуха. Допустимо прикрепить теплоотвод и к наружной стороне стенки, вырезав в корпусе отверстие под тринистор.

Перед креплением узла управления его нужно проверить и определить положение движка подстроечного резистора. К точкам 1, 2 платы подключают выпрямитель постоянного тока с регулируемым выходным напряжением до 15 В, а цепь индикации (резистор R1 и светодиод НL1) -к точкам 2 и 5. Движок подстроечного резистора устанавливают в нижнее по схеме положение и подают на узел управления напряжение около 13 В. Светодиод должен гореть. Перемещением движка подстроечного резистора вверх по схеме добиваются погасания светодиода. Плавно увеличивая напряжение питания узла управления до 15 В и уменьшая до 12 В, добиваются подстроечным резистором, чтобы светодиод зажигался при напряжении 12,8... 13 В и погасал при 14,2..14,7 В.

Зарядное устройство.

В сборнике «В помощь радиолюбителю» № 87 было помещено описание автоматического зарядного устройства К. Кузьмина, которое в условиях хранения аккумулятора в зимнее время позволяет автоматически включать его на зарядку при снижении напряжения и также автоматически выключать зарядку при достижении напряжения, соответствующего полностью заряженному аккумулятору. Недостатком этой схемы является ее относительная сложность, так как управление включением и выключением зарядки осуществляется двумя раздельными узлами. На рис. 1 приведена электрическая принципиальная схема зарядного устройства, свободная от этого недостатка: указанные функции осуществляются одним узлом.


Схема обеспечивает два режима работы - ручной и автоматический.

В ручном режиме работы тумблер SА1 находится во включенном -состоянии. После включения тумблера Q1 напряжение сети поступает на первичную обмотку трансформатора Т1 и загорается индикаторная лампочка HL1. Переключателем SА2 устанавливается необходимый ток зарядки, который контролируется амперметром РА1. Напряжение контролируется вольтметром РU1. Работа схемы автоматики на процесс зарядки в ручном режиме не влияет.

В автоматическом режиме тумблер SА1 разомкнут. Если напряжение аккумуляторной батареи меньше 14,5 В, напряжение на выводах стабилитрона VD5 получается меньше, чем необходимо для его отпирания, и транзисторы VТ1, VТ2 заперты. Реле К1 обесточено и его контакты К1.1 и К1.2 замкнуты. Первичная обмотка трансформатора Т1 подключена к сети через контакты реле К 1.1. Контакты реле К 1.2 замыкают переменный резистор R3. Происходит зарядка аккумуляторной батареи. При достижении напряжения на аккумуляторе 14,5 В стабилитрон VD5 начинает проводить ток, что приводит к отпиранию транзистора VТ1, а следовательно, и транзистора VТ2. Срабатывает реле и контактами К1.1 выключает питание выпрямителя. Благодаря размыканию контактов К1.2 в цепь делителя напряжения включается дополнительный резистор R3. Это приводит к увеличению напряжения на стабилитроне, который теперь остается в проводящем состоянии даже после того, как напряжение на аккумуляторной батарее окажется меньше 14,5 В. Зарядка аккумулятора прекращается и наступает режим хранения, в процессе которого происходит медленный саморазряд. В этом режиме схема автоматики получает питание от аккумуляторной батареи. Стабилитрон VD5 перестанет пропускать ток только после того, как напряжение аккумуляторной батареи понизится до 12,9 В. Тогда вновь запрутся транзисторы VТ1 и VТ2, реле обесточится и контактами К1.1 включит питание выпрямителя. Вновь начнется зарядка аккумулятора. Контакты К1.2 также замкнутся, напряжение на стабилитроне дополнительно понизится, и он начнет пропускать ток только после того, как напряжение на аккумуляторе увеличится до 14,5 В, то еcть когда аккумулятор будет полностью заряжен.

Настройка узла автоматики зарядного устройства производится следующим образом. Соединитель ХР1 к сети не подключается. К соединителю ХР2 вместо аккумуляторной батареи присоединяется стабилизированный источник постоянного тока с регулируемым выходным напряжением, которое устанавливается по вольтметру, равным 14,5 В. Движок переменного резистора R3 устанавливается в нижнее по схеме положение, а движок переменного резистора R4 - верхнее по схеме положение. При этом транзисторы должны быть заперты, а реле обесточено. Медленно вращая ось переменного резистора R4, нужно добиться срабатывания реле. Затем на клеммах соединителя Х2 устанавливается напряжение 12,9 В и медленным вращением оси переменного резистора R3 нужно добиться отпускания реле. В связи с тем что при отпускании реле резистор R3 замыкается контактами К1.2, эти регулировки оказываются независимыми одна от другой. Сопротивления резисторов делителя напряжения R2-R5 рассчитаны таким образом, что срабатывание и отпускание реле должны происходить соответственно при напряжениях 14,5 и 12,9 В в средних положениях переменных резисторов R3 и R4. Если необходимы другие значения напряжений срабатывания и отпускания реле, а пределов регулировки переменными резисторами окажется недостаточно, придется подобрать сопротивления постоянных резисторов R2 и R5.

В зарядном устройстве может быть применен такой же сетевой трансформатор, как и в устройстве К. Казьмина, но без обмотки III. Реле - любого типа с двумя группами размыкающих или переключающих контактов, надежно работающее при напряжении 12 В. Можно, например, использовать реле РСМ-3 паспорт РФ4.500.035П1 или РЭС6 паспорт РФ0.452.125Д.

Электронный сигнализатор зарядки аккумуляторной батареи.

А. Коробков

Чтобы продлить срок эксплуатации автомобильной аккумуляторной батареи, необходим эффективный контроль за режимом ее зарядки. Описываемое устройство сигнализирует водителю, когда напряжение на аккумуляторной батарее повышено и когда оно понижено, а генератор не работает. В случае повышенного потребления тока в бортовой сети при малой частоте вращения ротора генератора сигнализатор не срабатывает.

При разработке устройства ставилась цель разместить его в корпусе имеющегося в автомобиле сигнального реле РС702, что обусловило особенности конструкции сигнализатора и типы примененных транзисторов.

Принципиальная схема электронного сигнализатора вместе с цепями связи его с элементами бортовой сети приведена на рис. 1.


На транзисторах VT2, VT3 выполнен триггер Шмитта, на VT1 -узел запрета его срабатывания. В коллекторную цепь транзистора VT3 включена индикаторная лампа HL1, размещенная на приборном щитке. В горячем состоянии нить накала имеет сопротивление около 59 Ом. Сопротивление холодной нити в 7... 10 раз ниже. В связи с этим vтранзистор VT3 должен выдерживать бросок тока в коллекторной цепи до 2,5 А. Этому требованию удовлетворяет транзистор КТ814.

Аналогичные транзисторы используются и в качестве VT1 и VT2. Но здесь причиной их выбора послужило стремление получить малые геометрические размеры устройства - три транзистора устанавливают один под другим и закрепляют общим винтом с гайкой.

Напряжение бортовой сети за вычетом напряжения на стабилитроне VD2 через делитель R5R6 подается на базу транзистора VT2. Если оно выше 13,5 В, триггер Шмитта переключается в состояние, при котором выходной транзистор VT3 закрыт и лампа HL1 не горит.

База транзистора VT2 через стабилитрон VD1 и делитель R1R2 соединена также со средней точкой обмотки генератора. При исправном генераторе в ней относительно его плюсового вывода создается пульсирующее напряжение с амплитудой, равной половине генерируемого напряжения. Поэтому, если даже из-за большой токовой нагрузки в бортовой сети напряжение упадет ниже 13,5 В, ток с делителя R1R2 поступает в базу транзистора VT2 и не разрешает горение лампы. Чтобы исключить запрещение на включение сигнализации, когда отсутствует ток в обмотке возбуждения генератора, используется цепь, состоящая из делителя R1R2 и стабилитрона VD1. Она предотвращает попадание тока утечки через выпрямительные диоды генератора (в худшем случае до 10 мА) в базу транзистора VT2.

Напряжение бортовой сети за вычетом напряжения на стабилитроне VD2 через делитель R3R4 подается также на базу транзистора VT1, участок коллектор - эмиттер которого шунтирует базовую цепь транзистора VT2. При напряжении сети выше 15 В транзистор VT1 переходит в режим насыщения. При этом триггер Шмитта переключается в состояние, при котором транзистор VT3 открыт и, следовательно, зажигается лампа HL1.

Таким образом, лампа красного света на приборном щитке загорается, когда отсутствует ток зарядки и напряжение сети ниже 13,5 В, а также когда оно выше 15 В.

При использовании в автомобиле электронного регулятора напряжения, не имеющего отдельного провода к клемме аккумуляторной батареи, из-за падения напряжения (около 0,1...0,2 В) в цепи до входной клеммы регулятора (чаще всего в режиме холостого хода) при выключенных потребителях тока наблюдается кратковременное периодическое пропадание зарядного тока от генератора. Длительность и период такого эффекта обусловлены временем спадания напряжения на аккумуляторной батарее на 0,1...0,2 В и временем повышения его на то же значение и составляют, в зависимости от состояния аккумуляторной батареи, около 0,3...0,6 с и 1...3 с соответственно. При этом с таким же тактом срабатывает сигнальное реле РС702, зажигая лампу. Такой эффект нежелателен. Описываемый электронный сигнализатор исключает его, так как при кратковременных пропаданиях зарядного тока напряжение в бортовой сети не достигает нижнего порога 13,5 В.

Электронный сигнализатор выполнен на базе имеющегося в автомобиле сигнального реле РС702. Само реле с гетинаксовой платы удалено (после ликвидации заклепки). Кроме того, удалены заклепка с контактного лепестка «87» и Г-образная стойка у его основания.

Элементы сигнализатора монтируют на печатной плате (рис. 2)


Из фольгированного стеклотекстолита толщиной 1,5...2 мм. Транзисторы VT1-VT3 размещены по оси центрального отверстия платы: VT3 со стороны печатного монтажа коллекторной пластиной от платы, а VT2, VT1 (в указанном порядке) - с противоположной стороны платы коллекторными пластинами в сторону платы. Перед пайкой все три транзистора нужно стянуть винтом МЗ с гайкой. Их выводы соединяют с точками плиты полуженными медными проводниками, впаянными и нужные отверстии платы. Резисторы R3 и R5 припаивают не к токопроподящим дорожкам, а к штырям из провода. Это облегчает их замену при налаживании устройства. Элементы VD1 и VD2 устанавливают вертикально жестким выводом к плате. Так же вертикально расположен конденсатор С1, помещенный в хлорвиниловую трубку по диаметру конденсатора.

В сигнализаторе следует применять резисторы (кроме R8)-ОМЛТ (МЛТ) с номиналами и мощностью рассеивания, указанными на схеме. Допуск по номиналам ±10 %. Резистор R8 изготавливают из высокоомного провода, намотанного (1-2 витка) на резистор МЛТ-0,5. Конденсатор C1 - К50-12. Транзисторы VT1 - VT3 -любые из серии КТ814 или КТ816. Элемент VD1 - стабилитрон Д814 с любым буквенным индексом, VD2 - Д814Б или Д814В.

После окончания монтажа печатной платы электронный сигнализатор собирают в такой последовательности:
снимают гайку и винт, стягивающие транзисторы;
в сквозные отверстия транзисторов VT1, VT2 помещают хлорвиниловую трубку диаметром 3 мм;
в освободившуюся от реле РС702 плату вставляют лепестки (выводы) «30/51» (в центре) и «87»; последний закрепляют винтом М3 (головкой со стороны вывода) с гайкой высотой 3 мм;
винт М2,7 длиной 15...20 мм пропускают через отверстие в плате от реле РС702 (со стороны вывода «30/51»), затем насаживают на концы винтов смонтированную плату с транзисторами;
обеспечивают контакт вывода «30/51» с коллекторной пластиной транзистора VT3 (путем ее плотного прилегания к плоской части вывода);
проверяют наличие соединения вывода «87» с печатной платой через гайку с винтом;
короткие штырьки выводов «85» и «86» подгибают так, чтобы они вошли в предназначенные для них отверстия на печатной плате;
с помощью гаек М2,7 и МЗ с шайбами скрепляют обе платы;
припаивают штырьки выводов «85» и «86» к токопроводящим дорожкам.

При налаживании сигнализатора требуются блок питания с регулируемым напряжением от 12 до 16 В и лампа мощностью 3 Вт на 12 В.

Сначала при отключенном, резисторе R5 подбирают резистор R3. Необходимо добиться, чтобы при увеличении напряжения лампа загоралась в момент достижения 14,5... 15 В. Затем подбирают резистор R5 так, чтобы лампа зажигалась, когда напряжение снижается до 13,2...13,5 В.

Налаженный сигнализатор устанавливают на место реле РС702, при этом вывод «86» соединяют с «массой» автомобиля коротким проводом под винт крепления самого сигнализатора. К остальным выводам подключают провода электрооборудования, как это предусмотрено штатной схемой автомобиля с реле РС702, т. е. к выводу «85» - провод от средней точки генератора (желтый), к «30/51» - провод от лампы индикации (черный), к «87» - провод «±12 В» (оранжевый).

Испытания сигнализатора показали следующий результат. При коротком замыкании регулятора свечение лампы наблюдается при повышении частоты вращения генератора и зависит от нее. При изъятии предохранителя в цепи регулятора лампа загорается примерно через минуту независимо от частоты вращения. Этой информации достаточно, чтобы установить причину и вид неисправности системы генератор - регулятор напряжения.

При включении зажигания через час и более после остановки двигателя индикация работает, как и с релейным сигнализатором. Если же оно включается через незначительное время (менее 5 мин), лампа - сигнализатор зарядки не зажигается, но при пуске двигателя стартером вспыхивает и гаснет, свидетельствуя об исправности сигнализатора.

Установка описанного регулятора вместо штатного РС702 в автомобилях «Жигули» (ВАЗ-2101, ВАЗ-2102, ВАЗ-2103, ВАЗ-2106 и др.) позволит однозначно предупредить водителя о всех отклонениях в режиме работы аккумуляторной батареи и сохранить ее от губительной перезарядки.
[email protected]

Порой возникает неприятная ситуация, чаще всего зимой, когда не заводится машина. Причина — разряженный аккумулятор. В этом случае лучшим выходом будет — автоматическое зарядное устройство, которое предназначено для автомобильного аккумулятора. В статье рассматривается интеллектуальное зарядное устройство (ЗУ), дается его описание, особенности, как работает и в каких режимах.

[ Скрыть ]

Что такое интеллектуальное ЗУ?

Прогресс не стоит на месте и на смену громоздким трансформаторным зарядным устройствам весом около 20 кг пришли новые ЗУ для авто – интеллектуальные. Они способны реанимировать любой аккумулятор.

Свинцовый аккумулятор авто независимо от состава пластин с годами не изменился и требует такого же ухода, как и его предки. Кислотно-щелочные аккумуляторные батареи служат от 4 до 6 лет, если их правильно обслуживать: следить за уровнем и плотностью электролита. Для того, чтобы АКБ авто была всегда в рабочем состоянии, ее нужно подзаряжать, для этого в гараже нужно иметь зарядное устройство.

Прежде чем выбирать ЗУ для своего автомобиля, нужно изучить характеристики АКБ, установленной на авто. В основном на современных машинах устанавливаются аккумуляторы свинцово-кислотного типа. Параметры батареи следует смотреть на этикетке прибора.

Если говорить о зарядных устройствах, то современные ЗУ для авто могут быть: трансформаторными, импульсными, интеллектуальными и солнечными. Первый вид приборов громоздкий и постепенно покидающий авторынок, хотя он отличается надежностью. В основе второго вида ЗУ лежит высокочастотный импульсный блок питания. Благодаря этому удалось сделать небольших габаритов.


Интеллектуальное ЗУ имеет небольшие размеры, защиту от короткого замыкания и попадания влаги и пыли. В них все автоматизировано, поэтому нет необходимости в постоянном контроле во время зарядки. Именно, благодаря этой особенности их называют «умными». Это наилучший вариант зарядных устройств для автомобильных аккумуляторов на сегодня.

Принцип работы ЗУ в общем одинаков. Поступающий ток напряжением 220В преобразуется с помощью устройства в ток, напряжение которого снижено почти до номинального для конкретной АБК, а затем на него действует выпрямитель. Для каждого автомобильного аккумулятора условия зарядки отличаются. Например, свинцово-кислотные АКБ нужно заряжать до того, как они полностью разрядятся, поэтому их лучше постоянно подзаряжать.


Щелочные батареи авто следует заряжать только после полной их разрядки, так как это отражается на их емкости. Известно, что они имеют «эффект памяти», поэтому если они полностью не будут разряжены, их емкость будет уменьшаться.

Независимо от типа АКБ авто: кислотного или щелочного заряжать батарею нужно полностью.

Заправка АКБ имеет свои нюансы, но даже исправно работающая батарея авто нуждается в периодической подзарядке. Для поддержания правильного заряда предназначен генератор авто, но со временем качество зарядки может падать, поэтому гарантировать стабильность качества электрического тока невозможно.

Обеспечить качественную зарядку можно с помощью интеллектуального ЗУ, оно имеет следующие преимущества:

  • снижает расходы на обслуживание АКБ;
  • увеличивается срок службы батареи, правда, он зависит от ее износа;
  • с помощью ЗУ можно полностью восстановить работоспособности аккумулятора даже засульфатированного;
  • продлевается срок службы пластин;
  • процесс зарядки полностью автоматизирован;
  • увеличивается и стабилизируется ток отдачи АКБ (автор видео — Аккумуляторщик).

Особенности умных ЗУ

Основой интеллектуального ЗУ является высокотехнологическая электроника, благодаря которой производителям удалось создать прибор с полностью автоматическим процессом зарядки. Устройство представляет собой прибор небольших размеров с интеллектуальной подзарядкой, управление осуществляется с помощью микропроцессора. Микроконтроллер, установленный внутри, запрограммирован таким образом, что устройство может работать в разных режимах и с разной защитой.

Благодаря автозарядке владельцу не нужно вникать, как проходят циклы зарядки, делать точные измерения в течение подзарядки, чтобы отслеживать изменения зарядного тока и падение напряжения. Именно от этих показателей зависит качество зарядки, которая гарантирует продолжительную эксплуатацию АКБ.
Главная особенность микропроцессорного интеллектуального ЗУ в том, что пользователь должен знать только емкость батареи. Процесс зарядки полностью контролируется интеллектуальным устройством, оценивается состояние АКБ во время зарядки, учитывается износ батареи, контролируется, как проходит зарядка.


Если сравнивать процесс зарядки с помощью стандартного импульсного ЗУ, то заряжаться аккумулятор может до двух дней. При этом нужно следить, чтобы уровень электролита соответствовал норме, а ток заряда не был превышен устройством. При этом прибор заряжает батарею авто до номинального значения, а затем начинается процесс разрядки. Во время процесса зарядки возможны закипания и замыкания АКБ. Если не будет соблюдена технология зарядки, могут посыпаться пластины аккумулятора.

Большим преимуществом интеллектуальных ЗУ устройств является то, что с их помощью можно заряжать аккумуляторы любого типа: сурьмянистые, кальциевые, гелиевые и AGM. За счет отсутствия в конструкции прибора катушки, стало возможным сделать их компактными и легкими. В основном их вес не превышает 600 граммов. Самое мощное адаптивное интеллектуальное ЗУ весит не больше 1,5-2 кг.

Минусом интеллектуальных устройств можно считать невозможность ремонта своими силами, если произошла поломка. Отремонтировать прибор можно только в специализированном центре, так как для его ремонта нужны определенные знания, специальное оборудование и программное обеспечение. Поэтому в домашних условиях его ремонт невозможен. Кроме того, у многих устройств корпуса запаяны, чтобы полностью исключить попадание влаги внутрь.

Следует учесть, что полная зарядка с помощью автозарядного устройства занимает несколько часов и экстренно зарядить аккумулятор оно не сможет. Если необходимо будет зарядить АКБ перед работой, придется немного подождать. Чтобы избежать подобной ситуации, следует проверять зарядку батареи хотя бы раз в месяц.


Принцип работы и режимы

Интеллектуальное ЗУ отличается от стандартных аналогов принципом своей работы. В течение первых пяти часов проходят все основные циклы автозарядки. Затем автозарядное устройство оценивает и добивает заряд, устанавливая параметры и характеристики тока согласно состоянию аккумулятора. На это уходит еще 2-3 часа.

На многих интеллектуальных ЗУ есть режим адаптивного автозаряда. В этом случае на полную зарядку может понадобиться от 50 до 90 минут. Время, за какое батарея полностью зарядится, зависит от того, в каком состоянии АКБ и какова ее емкость. О полной зарядке устройство сообщит сигналом. Вид сигнала зависит от модели: это может быть световой сигнал либо на экран будет выведена соответствующая надпись. После этого прибор переходит в плавающий режим.

Многие специалисты не верят, что ЗУ за 50-90 минут может зарядить АКБ, не нанося ему вреда. Зная что 60А АКБ нужно заряжать током 6А длительностью 10 часов, а если ток выше, то сыпим пластины.

В отличие от транзисторных ЗУ, зарядное устройство с микроконтроллером может лечить засульфатированные батареи.

Интеллектуальные автозарядные устройства с компьютерным блоком имеют следующие функции:

  1. Десульфацию. Во время этого режима зарядное устройство проводит , благодаря которому разрушаются твердые кристаллы сульфатов, образующиеся при полной разрядке аккумулятора или длительном его простое.
  2. Мягкий старт. ЗУ четко контролирует, в каком состоянии находится аккумуляторная батарея, обеспечивая постоянную подзарядку, которая не превышает зарядного напряжения равного 12 В.
  3. Режим тестирования. Во время подзарядки микропроцессор запускает несколько тестов, по результатам которых принимает решение о следующем этапе зарядки. При этом выбирается вид зарядки. Она может быть импульсной или плавной.
  4. Восстановительный режим. Этот режим применяется, чтобы восстановить емкость убитых АКБ. Причем восстанавливаются даже самые безнадежные батареи.

При выборе интеллектуального зарядного устройства следует учесть следующие факторы:

  • лучше отдавать предпочтение моделям, которые имеют хотя бы небольшой запас зарядного тока;
  • покупать следует приборы известных производителей;
  • желательно выбирать устройство, работающее как в стандартном смарт-режиме, так и функционирующее в качестве стабилизирующего источника питания;
  • лучший выбор – комбинированные модели;
  • следует обращать внимание на индикацию, вес и габариты устройства.

Приобретение зарядного устройства позволит сэкономить на покупке нового аккумулятора, так как нет ограничений в использовании прибора, и он подходит для зарядки аккумулятора любого типа.